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Abstract

We consider the geometric structures on the moduli space of static finite energy solutions to the 2+1-dimensional unitary chiral
model with the Wess–Zummino–Witten (WZW) term. It is shown that the magnetic field induced by the WZW term vanishes when
restricted to the moduli spaces constructed from the Grassmannian embeddings, so that the slowly moving solitons can in some
cases be approximated by a geodesic motion on a space of rational maps from CP1 to the Grassmannian.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a fairly general framework for field theory. The space time (M, η) is a (D + 1)-dimensional
manifold with a Lorentzian metric η, and the target space (Y, hY ) is a k-dimensional manifold with a (pseudo-)
Riemannian metric hY . The dynamics of the theory depends on a choice of the action, which is a functional on the
space of maps Map(M, Y ). In the canonical approach one sets M = Σ × R, and regards the field equations as the
infinite dimensional dynamical system on the space M of maps J : Σ −→ Y , where the initial data set Σ is the
D-dimensional manifold with a Riemannian metric induced by η. The details depend on the model, but generally one
aims to formulate the evolution equations as the geodesic motion (possibly with a potential) onM. The L2 metric on
M is induced by the target space metric hY in the following way. For a given map J we identify TJM with the space
of maps X : Σ −→ T Y such that π ◦ X = J , where π : T Y → Y is a natural projection, and set

|X |
2

=

∫
Σ

hY (X (p), X (p))dp, X ∈ TJM, (1.1)

where dp is some measure on Σ .
In the case of gravity (where the overall structure differs slightly from the one described above) this leads to the

exact procedure realising the Einstein equation as a dynamical system, where the metric onM is the celebrated deWitt
metric, and the potential is given by the scalar curvature of the Riemannian metric on the initial data set Σ . To make
it all work one needs to factor out M by the action of the group of diffeomorphisms of Σ , and ensure that the initial
data satisfies the constraint equations [6].
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In gauge theory, where one considers the quotient ofM by the infinite dimensional group of gauge transformations,
the metric (1.1) coincides with the inner product induced by the kinetic term in the Lagrangian on M . Here the
emphasis has been on the approximate techniques. In the moduli space approximation [9] the dynamics is restricted
to a finite dimensional submanifold of M. This submanifold consists of appropriately chosen static finite energy
solutions to the full field equations. If the ‘initial position’ is given by a static solution which minimises the potential
energy of the field configuration and initial kinetic energy is small, then the trajectory in M can be expected to stay
close to a geodesic in the manifold of static finite energy solutions. This ‘follows from’ the total energy conservation.
In some cases the whole procedure can be made rigorous [15]. See [10] for a review of the geodesic method.

In other cases (including various string theories in 10 dimensions and 11-dimensional super-gravity), the target
space Y admits a rich structure consisting of more than just a (pseudo-)Riemannian metric. In particular any
differential (D + r)-form on Y induces an r -form on M in a way which does not depend on hY . If this differential
form appears in the Lagrangian it will give rise to an external (magnetic-like) field on the moduli space. This can lead
to interesting physical consequences. If the topology of M is non-trivial the Aharonov–Bohm effect may take place
on the space of solutions even if the magnetic field vanishes [23].

In this paper we shall give a detailed analysis of one example where an external field arise on the moduli space.
We shall take the space–time M to be R2,1, and the target space to be a unitary Lie group with its natural trace form
metric. Any Lie group admits a connection which parallel propagates left-invariant vector fields. This connection
is flat, but necessarily has torsion. Using this connection with torsion in the chiral model Lagrangian modifies the
equations of motion, and surprisingly makes them integrable [19]. This modification can also be interpreted in terms
of the WZW term in the chiral model action. In the rest of this section we shall introduce this modified chiral model,
originally due to Ward [18]. We shall also review its static solutions given in terms of the Grassmannian embeddings
CPn

−→ U (n + 1). In Section 2 we shall construct a metric and a magnetic potential on the moduli space of static
solutions. The corresponding magnetic field will be shown to vanish, but the flat magnetic connection can still be
interesting, since the moduli space (which in our case consists of based rational maps CP1

−→ CPn , where the
2-sphere Σ = S2

= CP1 is the initial data set compactified by the boundary conditions) is not simply connected. In
Section 3 we shall show that the magnetic 1-form can be obtained canonically from a pull-back of a certain 1-form
from CPn . In the Appendix we discuss the Noether currents arising from the WZW Lagrangian. Some of the results
presented in this paper appeared in the MSc Thesis of the second author.

1.1. Modified chiral model

Consider a smooth map J : R2,1
−→ U (n + 1). The integrable chiral model is defined by equation(

ηµν
− Vαεαµν

)
(J−1 Jµ)ν = 0,

η = diag(−1, 1, 1), Vα = (0, 1, 0), ε012
= 1,

(1.2)

where Greek letters denote three-dimensional space–time indices taking values 0, 1, 2 ≡ t, x, y. The abbreviated
notation of differentiation Jµ ≡ ∂µ J and the summation convention is going to be used in the article. A choice of
the unit space-like vector V = ∂/∂x breaks the Lorentz invariance down to SO(1, 1), but ensures the integrability of
(1.2).

The Lagrangian formulation of (1.2) contains the Wess–Zumino–Witten (WZW) term [2,7]. This involves an
extended field Ĵ defined in the interior of a cylinder which has the space–time as one of its boundary components

Ĵ : R2+1
× [0, 1] −→ U (n + 1)

such that Ĵ (xµ, 0) is a constant group element, which we take to be the identity 1 ∈ U (n +1), and Ĵ (xµ, 1) = J (xµ).
The Eq. (1.2) can be derived as a stationary condition for the action functional

S = SC + SM ,

SC = −
1
2

∫
[t1,t2]×R2

Tr (J ∧ ?J) ,

SM =
1
3

∫
[t1,t2]×R2×[0,1]

Tr
(
Ĵ ∧ Ĵ ∧ Ĵ ∧ V

)
,

(1.3)
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where J should be treated as a field. Here ? is a Hodge star of ηµν and

J = J−1 Jµdxµ, Ĵ = Ĵ−1 Ĵpdx p, p = 0, 1, 2, 3 ≡ t, x, y, ρ

are u(n+1)-valued 1-forms on R2+1 and R2+1
×[0, 1] respectively and V = 1 dx is a constant 1-form on R2+1

×[0, 1].
We make an assumption that the extension Ĵ is of the form

Ĵ (xµ, ρ) = F
(
J (xµ), ρ

)
(1.4)

for some smooth function F : U (n + 1) × [0, 1] −→ U (n + 1). The WZW term SM in the action is topological in
the sense that its integrand does not depend on the metric on R2,1.

Following [22] we can obtain a more geometric picture by regarding the domain of Ĵ as B × R, where B is a ball
in R3 with the boundary ∂ B = S2 regarded as a compactified space, and rewriting SM as

SM =

∫
[t1,t2]×B

Ĵ ∗(T ) ∧ V, V = dx .

Here T is the preferred 3-form [2] on U (n + 1) in the third cohomology group given by T = Tr[(φ−1dφ)3
] for

φ ∈ U (n + 1). This 3-form coincides with torsion of a flat connection ∇ on U (n + 1) which parallel propagates
left-invariant vector fields, i.e.

T (X, Y, Z) = g (∇X Y − ∇Y X − [X, Y ], Z) ,

where g = −Tr(φ−1dφ φ−1dφ) is the metric on U (n +1) given in terms of the Maurer–Cartan 1-form (this definition
makes sense for any matrix Lie group).

The torsion 3-form T can be pulled back to B. It is closed, so T = dλ, where λ is a 2-form on G which can be
defined only locally. The Stokes theorem now yields

SM =

∫
[t1,t2]×B

d( Ĵ ∗(λ) ∧ V )

=
1
2

∫
S2×[t1,t2]

(εµναVα)λi j (φ)∂µφi∂νφ
j dxdydt,

where φi
= φi (xµ) are local coordinates on the group (e.g. the components of the matrix J ). In the above derivation

we have neglected the boundary component (t1 × B) ∪ (t2 × B), as variations of the corresponding integrals vanish
identically.

Time translational invariance of S gives rise to the conservation of the energy functional which appears to be the
same as for the ordinary chiral model1

E = T + E p,

T = −
1
2

∫
R2

Tr
(
(J−1 Jt )

2
)

dxdy,

E p = −
1
2

∫
R2

Tr
(
(J−1 Jx )

2
+ (J−1 Jy)

2
)

dxdy.

(1.5)

Finiteness of energy can be ensured [18] by imposing the boundary condition on J

J (t, r, θ) = J0 + r−1 J1(θ) + O(r−2), x + iy = reiθ , (1.6)

where J0 is a constant matrix [18] and the whole dependence on t lies in O(r−2).

1.2. Grassmannian models

A Grassmannian model in 2 + 1 dimensions is defined by the equation

[∂µ∂µ P, P] = 0, (1.7)

1 In the Appendix we shall construct the corresponding momenta in x and y directions.
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where P is a map from R2+1 into the Grassmannian manifold Gr(m, n+1) of complex m-dimensional linear subspaces
in Cn+1. We shall think of P as a complex Hermitian matrix of rank m such that P2

= P .
The field equation (1.7) can be derived from the action

S = 2
∫

[t1,t2]×R2
Tr (P ∧ ?P) , (1.8)

where P = Pµdxµ. For m = 1 the Grassmannian models reduce to the CPn models.

1.3. Moduli space approximation

All finite energy static solutions to (1.2) can be factorised in terms of maps P(α) of R2 into Grassmannian
manifolds [16,24]

J = K (1 − 2P(1))(1 − 2P(2)) · · · (1 − 2P(N )), (1.9)

where K is a constant unitary matrix, P(α) satisfy some first order PDEs, and N ≤ n is the so called uniton number.
It can happen that all uniton factors can be shrunk into the form

J = K (1 − 2P), (1.10)

where P maps R2 into some Grassmannian manifold but does not necessarily satisfy the first order PDEs involved
in the definition of unitons. It can be easily checked that (1.10) is a solution to chiral model if and only if P is a
solution to Grassmannian model. We will call such solutions Grassmannian embeddings. Note that they can represent
one-uniton as well as particular multi-uniton solutions. One-uniton solutions correspond to P being (anti)instanton
solution, which at the level of the Grassmannian model minimises the value of energy in its topological sector. For
such solutions the energy is proportional to the topological charge of the Grassmannian projector (given by the formula
(3.2) in Section 3). This is also true for the potential energy of the chiral field J , defined in (1.5), since in the case of
(1.10) it is equal to the energy of P .

Integrability of the model enables a construction of time dependent solutions by twistor and inverse scattering
methods [18,20]. Approximate solutions corresponding to low energy exact solutions can also be sought by a
modification of Manton’s geodesic approximation. The modification relies on taking into account a background
magnetic field in the moduli space of static solutions induced by WZW term in (1.3), and has been discussed in [4] for
the SU (2) models. In this reference the moduli space has been constructed from static solutions of the model obtained
by embedding the instanton solutions of the CP1 model (which together with an analogous procedure of embedding
anti-instantons gives all static solutions in the SU (2) case). It has been demonstrated that the magnetic field vanishes
and so the integrable SU (2) chiral model appears to be equivalent to the usual SU (2) chiral model at the level of the
approximation. The proof given in [4] relied on the fact that SU (2) is three dimensional, and it remained uncertain
how the magnetic field behaves for higher dimensions of the target manifold. The main result of this paper is to clarify
this and to show that the magnetic field vanishes on moduli spaces constructed from the Grassmannian embeddings
into U (n + 1) models for arbitrary n. The static Grassmannian solutions will not be required to be instantons or
anti-instantons in our proof.

2. The metric and the magnetic field on the moduli space

The boundary conditions (1.6) imply that the finite energy static solutions to (1.2) are maps from S2 (conformal
compactification of R2) into U (n + 1). In the moduli space approximation we choose a class of such solutions
which are homotopic as maps of S2 into U (n + 1) and all have the same value of potential energy. Ideally every
such map ought to provide minimum of the potential energy. This is the case on the level of the Grassmannian
models for constructions which involve (anti)instanton solutions. For chiral models one can show that all finite energy
static solutions are saddle points of the potential energy functional [11]. This raises a question about stability of the
approximate solutions.

For a given value of the topological charge, all solutions in the class can be described by finite set of parameters,
which in the case of instantons are positions of zeros and poles of holomorphic functions. To ensure finite values of
kinetic energy we need to impose the base condition on the solutions by fixing their value at spatial infinity. Then the
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parameters, if chosen appropriately, may define a map on the resulting moduli space. Next we allow the parameters
to depend on time and so time dependent approximate solutions correspond to paths in the moduli space. Let us
denote the solutions contributing to the moduli space by J (γ ; x, y), where γ denote real parameters. Approximate
time dependent solutions are then of the form J (γ (t); x, y) and time differentiation gives

Jt = J j γ̇
j , j = 1, . . . , dimM. (2.1)

The dynamics is governed by the action obtained as a restriction of (1.3) to the moduli space

SM =

∫ t2

t1

(
1
2

h jk γ̇
j γ̇ k

+ A j γ̇
j
)

dt. (2.2)

The metric term can be obtained from kinetic energy form (1.5) by use of (2.1)

T =
1
2

h jk γ̇
j γ̇ k, h jk = −

∫
Tr
(

J−1 J j J−1 Jk

)
dxdy, (2.3)

and the magnetic term can similarly be obtained from the WZW term, which can be rewritten by cyclic property of
the trace as

SM =

∫ t2

t1

∫
R2

∫ 1

0
Tr([ Ĵ−1 Ĵt , Ĵ−1 Ĵy] Ĵ−1 Ĵρ)dρdxdydt

=

∫ t2

t1
A j γ̇

j dt,

where

A j =

∫
R2

∫ 1

0
Tr([ Ĵ−1 Ĵ j , Ĵ−1 Ĵy] Ĵ−1 Ĵρ)dρdxdy. (2.4)

Then A = A j dγ j is the magnetic 1-form on the moduli space. We shall now prove the following

Theorem 2.1. The magnetic field (2.5) vanishes on moduli spaces constructed from embeddings (1.10) of
Grassmannian solutions.

Proof. The essence of WZW term is that its variation does not depend on the particular choice of the extension Ĵ . We
consider the variations restricted to the moduli space δ J = Jiδγ

i , and find

δSM =

∫ t2

t1

∫
R2

Tr
(

J−1 Jy[J−1δ J, J−1 Jt ]
)

dxdydt

= −

∫ t2

t1

∫
R2

Tr
(

J−1 Jy[J−1 Ji , J−1 J j ]
)

dxdyγ̇ jδγ i dt.

Comparing this expression with the variation of (2.4)

δSM =

∫ t2

t1
Fi j γ̇

jδγ i dt, Fi j = ∂i A j − ∂ j Ai

gives

Fi j = −

∫
R2

Tr
(

J−1 Jy[J−1 Ji , J−1 J j ]
)

dxdy, (2.5)

where F =
1
2 Fi j (γ )dγ i

∧ dγ j is the the magnetic field. We can see, that although the magnetic 1-form A in
general depends on the choice of the extension Ĵ , its exterior derivative F does not. Changing the extension merely
corresponds to a gauge transformation of A.

Note that the potential energy term has not been included in the effective action (2.2). The potential is proportional
to the topological charge (3.2), and does not contribute to the effective equations of motion.
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Let now us consider a Grassmannian projector P depending smoothly on some set of variables, which we shall
denote by a, b, c. From idempotency and the Leibniz rule we deduce

Pa = Pa P + P Pa,

and

Pa Pb Pc = P Pa Pb Pc + Pa P Pb Pc = P Pa Pb Pc + Pa Pb Pc − Pa Pb P Pc

= P Pa Pb Pc + Pa Pb Pc − Pa Pb Pc + Pa Pb Pc P = P Pa Pb Pc + Pa Pb Pc P.

Taking the trace of the above expression gives

Tr(Pa Pb Pc) = Tr(2P Pa Pb Pc). (2.6)

If J is given by (1.10) then

Tr
(

J−1 Jy[J−1 Ji , J−1 J j ]
)

∼ Tr
(
(1 − 2P)Py[Pi , Pj ]

)
, (2.7)

where we have assumed that K does not depend on parameters γ on the moduli space to ensure the finiteness of the
kinetic energy. The RHS of (2.7) vanishes because of (2.6), which in turn implies the vanishing of the magnetic field
(2.5). �

3. Canonical structures on the moduli space

The CPn models have been discussed in detail within the moduli space approach [17,14]. It is convenient to
choose a map and perform calculation in a local framework. We can represent complex directions in Cn+1, which are
the elements of CPn , by vectors in Cn+1 with their first component fixed to 1. Then the map f defined by

CPn
3 (1, f 1, . . . , f n) −→ ( f 1, . . . , f n) ∈ Cn (3.1)

belongs to the maximal holomorphic atlas of CPn . The results do not depend on the choice of this map. The topological
charge for the CPn models is

Q = −i
∫
R2

Tr(P[Px , Py])dxdy = −
1
4

∫
R2

P∗Φ, (3.2)

where

Φ = −4i∂∂̄ ln

(
1 +

n∑
l=1

| f l
|
2

)
= −4i

δ jk
(

1 +

n∑
l=1

| f l
|
2
)

− f j f̄ k

(
1 +

n∑
l=1

| f l |2
)2 d f k

∧ d f̄ j (3.3)

is the Kähler form of the Fubini–Study metric on CPn and P∗Φ denotes its pull-back. The first expression for Q given
in (3.2) is often more convenient for calculations, while the second clarifies the topological character. The matrix P is
given in terms of f l by

P =
W ⊗ W Ď

W ĎW
, W =


1
f 1

...

f n

 . (3.4)

The equality (3.2) is proved by establishing that in the chosen map both expressions give

−i
∫
R2

n∑
k, j=1

δk j
(

1 +

n∑
l=1

| f l
|
2
)

− f̄ k f j

(
1 +

n∑
l=1

| f l |2
)2

∂( f k, f̄ j )

∂(x, y)
dxdy. (3.5)
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The most natural choice of the family of static solutions for the purpose of construction of the moduli space is
to consider solutions which minimise the energy for a given value of topological charge. These instanton (or anti-
instanton) solutions correspond to f l , l = 1 . . . n being rational holomorphic (respectively antiholomorphic) functions
of the complex variable z = x + iy. Let us concentrate on instantons, in which case [24]

Q = 2π N , (3.6)

where N = maxl(kalg f l) is an integer. Here kalg f l is the algebraic degree of the rational function f l . Note that
(3.6) holds for any smooth map P : S2

−→ CPn with N being the homotopy class under the standard isomorphism
π2(CPn) = Z. To see it (e.g. [1]) consider the homology group H2(CPn). This is isomorphic to Z. If P : S2

−→ CPn

is a map from the compactified space to CPn , representing a homology class P∗[S2
], we obtain the corresponding

integer by evaluating P∗[S2
] on a standard generator for H2(CPn) represented by the Kahler form Φ. In terms of

differential forms, evaluating a cohomology class on a homology class just means integrating, so the evaluation of
P∗[S2

] on Φ is given by the RHS of (3.2). Now consider the Hurewicz homomorphism from π2(CPn) to H2(CPn)

sending the homotopy class of P : S2
−→ CPn to P∗[S2

], where [S2
] ∈ H2(S2) is the fundamental class. The

projective space CPn is simply connected, so this is an isomorphism π2(CPn) = H2(CPn) = Z.
For a given N , the finiteness of the energy requires the base condition to be imposed. We therefore fix the limit of

each f l at the spatial infinity. Let us choose this limit to be equal to one for all functions f l . Then they are of the form

f l
=

pl(z)
ql(z)

=
(z − ql,1) . . . (z − ql,N )

(z − ql,N+1) . . . (z − ql,2N )
, l = 1, . . . , n, (3.7)

and complex numbers q are holomorphic coordinates on a finite dimensional moduli spaceMN ⊂ M. We can define
the metric as a restriction of kinetic energy form to MN (like in (2.3)). Its completeness is obviously equivalent to
the requirement that the kinetic energy is finite along all curves in MN . Although the base condition was necessary
to ensure finite kinetic energies, it appears not to be sufficient as the metric is complete only on leaves of appropriate
foliation of MN [17,14] and we need to restrict the dynamics to these leaves. These restrictions are assumed to hold
in the rest of the paper and we will often use the symbolMN to denote some particular leaf.

The metric described above, which can be obtained explicitly from (2.3) by use of (1.10), is Kähler with respect to
the natural complex structure induced by map (3.7), with the Kähler potential

Ω = 8
∫
R2

ln
n∑

l=1

(|pl |
2
+ |ql |

2)dxdy. (3.8)

As noted in [13] this metric can also be defined canonically. Let γ denote the set of real parameters of
all rational functions (3.7), which provide real coordinates on MN . For example one may consider γ =

((q + q)/2, (q − q)/(2i)). In the following, γ will also denote a point inMN . Let {P(γ ; ·) : R2
−→ CPn, γ ∈ MN }

be instanton solutions of the model. We can define the maps

F : MN × R2
−→ CPn, F(γ, p) := P(γ ; p), (3.9)

Fp := F(·, p) : MN −→ CPn

Fγ := F(γ, ·) : R2
−→ CPn .

(3.10)

For each smooth vector field onMN

X : MN −→ TMN , X ∈ TγMN

we can now define the metric h canonically by

h(X, X) =

∫
R2

ĥ
(
Fp∗ X, Fp∗ X

)
dxdy, (3.11)

where Fp∗ X denotes the push-forward of a vector field, ĥ is a Fubini–Study metric on CPn and integration is
performed with respect to p ≡ (x, y).
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Let us now observe that all the results discussed here for CPn models can be extended to the chiral models. To see
it consider the moduli space constructed from CPn embeddings (1.10), where for convenience we set K = −i1:

J = −i(1 − 2P). (3.12)

Since the kinetic energy for chiral models rewritten in terms of P is precisely the one for CPn models, the Kähler
structure is also the same. Thus the moduli space MN can be considered as an arena for slowly moving CPn

Skyrmions, as well as the low energy solutions to the U (n+1) Ward model. The magnetic 1-form (2.4) is an interesting
object in spite of the fact that it does not influence the motion. In Theorem 3.1 we shall show how it arises canonically
on the moduli space. Let us first make some comments about the extensions of J used in the variational principle.

In general any J can be extended, as the obstruction group π2(U (n + 1)) vanishes. In the case of soliton solutions
to (1.2) we can be more explicit. It has been shown in [3] that all solitons factorise as J =

∏
α Mα into a finite number

of the time dependent unitons of the form Mα = 1 − (1 − e2iφα )Pα , where Pα = Pα(x, y, t) are Hermitian projectors,
and the real constants φα are the phases of the poles on the spectral plane. Any of these projectors can be extended by

Mα −→ M̂α = 1 − (1 − e2iρφα )Pα, (3.13)

thus giving the extension Ĵ =
∏

α M̂α . In the next theorem we shall use an extension

Ĵ (t, x, y, ρ) = cos g(ρ)1 + sin g(ρ)J (t, x, y). (3.14)

This extension corresponds to F(J, x, y, ρ) = cos g(ρ)1 + sin g(ρ)J , however the domain of F should be restricted
from to U × R2

× [0, 1], where

U := {J = −i(1 − 2P) : P ∈ CPn
}.

Such restriction is allowed, since all mappings J within the moduli space take values in U ⊂ U (n + 1). In the case
of static solutions (3.12) the extensions (3.13) and (3.14) differ only by an overall factor depending on ρ, which does
not contribute to the magnetic 1-form.

Theorem 3.1. The magnetic 1-form (2.4) induced by WZW term for the extension (3.14) coincides with the canonical
1-form onMN defined by

Akan(X) =
π

2

∫
R2

ĥ
(
Fγ ∗V, Fp∗ X

)
dxdy (3.15)

where V = ∂/∂x is the unit vector defining the Ward equation (1.2).

Proof. Let us compare components of both 1-forms in the map γ . From (3.15) we find

(Akan) j = Akan

(
∂

∂γ j

)
=

π

2

∫
R2

ĥ
(

Fγ ∗V (p), Fp∗

∂

∂γ j

)
dxdy

=
π

2

∫
R2

Φ
(
J Fγ ∗V (p), Fp∗

∂

∂γ j

)
dxdy,

where J is the standard complex structure on CPn given by J ∂
∂ f l = i ∂

∂ f l . Since

J Fγ ∗V (p) = i
∂ f k

∂z
∂

∂ f k − i
∂ f̄ k

∂ z̄
∂

∂ f̄ k
, Fp∗

∂

∂γ j =
∂ f k

∂γ j
∂

∂ f k +
∂ f̄ k

∂γ j
∂

∂ f̄ k
,

we can use linearity and antisymmetry of the Fubini–Study Kähler form Φ given by (3.3) to obtain

(Akan) j =
π

2

∫
R2

i
{

f k
z f̄ l

jΦ
(

∂

∂ f k ,
∂

∂ f̄ l

)
− f̄ k

z f l
jΦ
(

∂

∂ f̄ k
,

∂

∂ f l

)}
dxdy,

where the short notation ∂ f k/∂z = f k
z , ∂ f k/∂γ j

= f k
j has been used. Since Φ is a fundamental form of a Hermitian

metric, we have

Φ
(

∂

∂ f̄ k
,

∂

∂ f l

)
= Φ

(
∂

∂ f k ,
∂

∂ f̄ l

)
,
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so

(Akan) j = −π

∫
R2

Im
{

f k
z f̄ l

jΦ
(

∂

∂ f k ,
∂

∂ f̄ l

)}
dxdy.

Finally we use (3.3) to obtain

(Akan) j = π

∫
R2

4(
1 +

n∑
r=1

| f r |2
)2 Re

{(
1 +

n∑
r=1

| f r
|
2

)
f l
z f̄ l

j − f k
z f̄ k f l f̄ l

j

}
dxdy. (3.16)

Let us now consider the 1-form (2.4) induced by the WZW term. Substituting (3.14) into (2.4), performing ρ

integration and using (3.12) yields

A j = −2π i
∫
R2

Tr(P[Pj , Py]).

To rewrite this expression in terms of rational functions f k one needs to use (3.4). Then it is straightforward but
laborious to obtain

A j = 2π i
∫
R2

n∑
k,l=1

δkl
(

1 +

n∑
r=1

| f r
|
2
)

− f̄ k f l

(
1 +

n∑
r=1

| f r |2
)2

∂( f k, f̄ l)

∂(γ j , y)
dxdy. (3.17)

For holomorphic functions f k we have

∂( f k, f̄ l)

∂(γ j , y)
= −i f k

j f̄ l
z − i f̄ l

j f k
z ,

δkl ∂( f k, f̄ l)

∂(γ j , y)
= −2i Re ( f̄ k

z f k
j ), − f̄ k f l ∂( f k, f̄ l)

∂(γ j , y)
= 2i Re ( f k f̄ k

j f l
z f̄ l).

These formulae and (3.17) lead to

A j =

∫
R2

4π(
1 +

n∑
r=1

| f r |2
)2 Re

{(
1 +

n∑
r=1

| f r
|
2

)
f l
z f̄ l

j − f k
z f̄ k f l f̄ l

j

}
dxdy (3.18)

which is the same as (3.16). �

Similarly, by this method we can easily prove that Ruback’s metric (3.11) is equal to the metric (2.3), obtained as a
reduction of kinetic energy form toMN . To see it write the components of (3.11)

h jk = h
(

∂

∂γ j ,
∂

∂γ k

)
=

∫
R2

ĥ
(

Fp∗

∂

∂γ j , Fp∗

∂

∂γ k

)
dxdy

=

∫
R2

ĥ
(

∂ f r

∂γ j
∂

∂ f r +
∂ f̄ r

∂γ j
∂

∂ f̄ r
,

∂ f s

∂γ k
∂

∂ f s +
∂ f̄ s

∂γ k
∂

∂ f̄ s

)
dxdy

=

∫
R2

8(
1 +

n∑
l=1

| f l |2
)2 Re

{(
1 +

n∑
l=1

| f l
|
2

)
f r

j f̄ r
k − f s

j f̄ s f r f̄ r
k

}
dxdy. (3.19)

On the other hand the substitution of (3.4) into (2.3) yields
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2T =

∫
R2

8
(W ĎW )2

{
W ĎW W Ď

t Wt − W ĎWt W Ď
t W
}

dxdy

=

∫
R2

8(
1 +

n∑
l=1

| f l |2
)2

{(
1 +

n∑
l=1

| f l
|
2

)
f r
t f̄ r

t − f s
t f̄ s f r f̄ r

t

}
dxdy. (3.20)

4. Conclusions

Chiral models in 2 + 1 dimensions can be made integrable by addition of a Wess–Zumino–Witten term to the
standard action. This additional term gives rise to the magnetic 1-form on the moduli space of based rational maps
CP1

−→ CPn , i.e. the space of instanton solutions of the CPn model, possibly embedded into chiral models. The
magnetic 1-form depends on the choice of extension of the chiral field involved in the definition of the WZW term, but
different extensions correspond to the U (1) gauge transformations of the 1-form. The push-forward of the space-like
unit vector appearing in (1.2) to the target space canonically defines a 1-form on such moduli space and we have
shown that there exists a preferred gauge, which makes the WZW induced magnetic 1-form equal to the one obtained
canonically.

The U (1) connection defined by the magnetic 1-form is flat. This is the case not only for moduli spaces of instanton
CPn solutions, as the magnetic field vanishes on all moduli spaces constructed from Grassmannian embeddings. These
results generalise the analysis of [4] which applies only to the target space SU (2). A treatment of the moduli spaces of
non-commutative solitons in the integrable U (n + 1) chiral model was recently given in [8], where even the Abelian
case n = 0 leads to a non-trivial structure.

In the case of U (2) model there are no more possibilities, since here all static solutions are necessarily
Grassmannian embeddings. It remains to be seen whether it is possible to construct the moduli spaces from static
non-Grassmannian solutions of U (n +1) model for n > 1, such that the field would not vanish. For the Grassmannian
embeddings the vanishing of the field is implied by vanishing of its density, the integrand of (2.5). It is possible to
construct a moduli space for the U (3) model such that this density does not vanish, however it seems to possess
symmetries which ensure vanishing of the integral. This has been checked only for a few points in the moduli space,
so the problem is open.

The moduli space approach to the ordinary CPn model in 2+1 dimensions does not approximate the true dynamics
of the model. This has recently been shown by Rodnianski and Sterbenz [12] by a rigorous analysis of the (non-
integrable) equations of motion. Rodnianski and Sterbenz have demonstrated that a class of solutions must blow up
in finite time and a rate of this blow up is different than predicted by the geodesic approximation. The situation for
the modified chiral model (1.2) is quite different, as there exist exact solutions which are regular for all times [18,21,
3]. For some of these solutions the total (kinetic + potential) energy is quantised at the classical level by the elements
of π3(U (n + 1)) [5], and thus for all t the total energy is equal to the potential energy of some static solution which
in turn is equal to the degree (3.6) of some Grassmannian projector. Solutions to (1.2) obtained in the moduli space
approximation presented in this paper have energies close to their potential energy as their kinetic energy is small. We
should therefore expect that some of these approximate solutions arise from exact solutions by a limiting procedure.
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Appendix

The model (1.2) is translationally invariant and one expects to find the conserved momentum corresponding to the
space translations. In [18] Ward has observed that the total energy and the y-momentum for (1.2) are the same as for
the ordinary chiral model, but the x-momentum of the chiral model is not conserved by the time evolution (1.2) of the
initial data. Here we shall revisit this problem and find the x-momentum using the WZW Lagrangian (1.3) written in
terms of the torsion on U (n + 1). The Lagrangian density takes the form

L = −
1
2
ηµν∂µφi∂νφ

j gi j (φ) +
1
2

Vαεαµνλi j (φ)∂µφi∂νφ
j ,
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where g is the metric on the group, and λ is a local 2-form potential for the totally antisymmetric torsion [19]. The
conserved Noether energy–momentum tensor is

Tµν = ηµνL−
∂L

∂(∂µφ j )
∂νφ

j .

The energy corresponding to T00 is given by (1.5), and the momentum densities are

Py = T02 = −Tr
(

J−1 Jt J−1 Jy

)
,

Px = T01 = −Tr
(

J−1 Jt J−1 Jx

)
− λi j∂xφ

i∂yφ
j . (A.1)

The additional term in the conserved x-momentum Px =
∫
R2 Px dxdy does not depend on the choice of λ, since for a

fixed t

Θ :=

∫
R2

λi j (φ)∂xφ
i∂yφ

j dxdy =

∫
R2

J ∗λ. (A.2)

This expression does not change under the transformation λ → λ + dβ because
∫
R2 d(J ∗β) = 0 as a consequence of

the boundary condition (1.6). We can therefore choose the extension Ĵ given by (3.13) to find the additional term Θ
using the identity∫

R2
λi j∂xφ

i∂yφ
j dxdy =

∫
R2

∫ 1

0
Tr
(

Ĵ−1 Ĵρ

[
Ĵ−1 Ĵy, Ĵ−1 Ĵx

])
dρdxdy, (A.3)

which follows from calculating Px in terms of Ĵ directly from (1.3).
Consider the time dependent one-soliton solution [18]

J = i
(

1 −

(
1 −

µ

µ̄

)
P
)

.

Here µ ∈ C/R is a non-real constant, P = W ⊗ W Ď/‖W‖
2 is the Grassmannian projection (3.4) and the components

of W : R2,1
→ Cn+1 are holomorphic and rational in ω = x +

µ
2 (t + y) +

µ−1

2 (t − y). In this case the additional
term Θ is proportional to the topological charge (3.2), which is itself a constant of motion as the time evolution is
continuous.
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